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Introduction
A particle interacts with the vacuum chamber produces EM fields.

The motion of a particle following is perturbed.

(~E , ~B) seen by
particles

= (~E , ~B) external, from
magnets, rf, etc.

+ (~E , ~B) wake
fields

where

(~E , ~B) wake
fields

{
∝ beam intensity

� (~E , ~B)external

Perturbation breaks down when potential-well distortion is large.
Then, distortion has to be included into non-perturbative part.

What we need to compute are the EM wake fields at a distance
z behind the source particle.

The computation of the wake fields is nontrivial.

Two approximations lead to a lot of simplification.
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1. Rigid-Bunch Approximation

Motion of beam not affected during traversal through discontinuities.

ssource

z

witness ~v

Source particle at s =βct

Witness particle at s =z + βct

z < 0 for particle following.

This does not imply

no synchrotron motion.

Rigidity implies beam at high energies.

2. Impulse Approximation

We do not care about the wake fields ~E , ~B, or the wake force ~F .

We only care about the impulse

∆~p =

∫ ∞

−∞
dt ~F =

∫ ∞

−∞
dt q(~E + ~v × ~B)

We will see how the simplification evolves.
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Panofsky-Wenzel Theorem

Maxwell equation for witness particle at (x , y , s, t) with s = z + βt:

~∇·~E =
qρ

ε0
Gauss’s law for electric charge

~∇×~B − 1

c2

∂~E

∂t
= µ0qβcρŝ Ampere’s law

~∇·~B = 0 Gauss’s law for magnetic charge

~∇×~E +
∂~B

∂t
= 0 Faraday’s & Lenz law

Want to write Maxwell equation for the impulse ∆~p.

First compute

with ~F = q(~E + ~v × ~B)
~∇·~F =

qρ

ε0γ2
− qβ

c

∂Es

∂t
,

~∇×~F = −q

(
∂

∂t
+ βc

∂

∂s

)
~B.
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~∇×∆~p (x , y , z) =

∫ ∞

−∞
dt
[
~∇×~F (x , y , s, t)

]
s=z+βct

.
↑ ↑
this ~∇ refers this ~∇ refers
to x , y , z to x , y , s

We obtain

~∇×∆~p = −q

∫ ∞

−∞
dt

[(
∂

∂t
+ βc

∂

∂s

)
~B(x , y , s, t)

]
s=z+βct

= −q

∫ ∞

−∞
dt

d~B

dt
= −q~B(x , y , z+βct, t)

∣∣∣∞
t=−∞

= 0,

Dot product with ŝ =⇒ ~∇·(ŝ×∆~p) =⇒ ∂∆px

∂y
=

∂∆py

∂x

Cross product with ŝ =⇒ ∂

∂z
∆~p⊥ = ~∇⊥∆ps . ←− P-W Theorem

P-W theorem gives strong restriction between longitudinal and
transverse.

But it is very general. Does not depend on any boundary conditions.
Even do not require β = 1.

K.Y. Ng (Fermilab) Coupling Impedances in Accelerator Rings November, 2009 6 / 88



~∇×∆~p (x , y , z) =

∫ ∞

−∞
dt
[
~∇×~F (x , y , s, t)

]
s=z+βct

.
↑ ↑
this ~∇ refers this ~∇ refers
to x , y , z to x , y , s

We obtain

~∇×∆~p = −q

∫ ∞

−∞
dt

[(
∂

∂t
+ βc

∂

∂s

)
~B(x , y , s, t)

]
s=z+βct

= −q

∫ ∞

−∞
dt

d~B

dt
= −q~B(x , y , z+βct, t)

∣∣∣∞
t=−∞

= 0,
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Supplement to Panofsky-Wenzel Theorem

β = 1 =⇒ ~∇⊥ ·∆~p⊥ = 0.

Proof:

~∇·∆~p =

∫ ∞

−∞
dt
[
~∇·~F (x , y , s, t)

]
s=z+ct

= q

∫ ∞

−∞
dt

[
ρ

ε0γ2
− β

c

∂Es

∂t

]
s=z+ct

−→ q

∫ ∞

−∞
dt

[
∂Es

∂s

]
s=z+ct

=
∂

∂z
∆ps

Use has been made of

1 Space-charge term
qρ

ε0γ2
omitted because β → 1.

2
∂

∂t
Es(s, t) =

d

dt
Es(s, t)−

ds

dt

∂

∂s
Es(s, t).

Maxwell equations now become

~∇×∆~p = 0 and ~∇ ·∆~p =
∂

∂z
∆ps without any source terms.
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Cylindrical Symmetric Vacuum Chamber



∂

∂r
(r∆pθ)=

∂

∂θ
∆pr

∂

∂z
∆pr =

∂

∂r
∆ps

∂

∂z
∆pθ =

1

r

∂

∂θ
∆ps

∂

∂r
(r∆pr )=− ∂

∂θ
∆pθ (β = 1)

=⇒



∂

∂r
(r∆p̃θ)=−m∆p̃r

∂

∂z
∆p̃r =

∂

∂r
∆p̃s

∂

∂z
∆p̃θ =−m

r
∆p̃s

∂

∂r
(r∆p̃r )=−m∆p̃θ (β = 1)

Cylindrical symmetry =⇒ expansion in terms of cos mθ or sin mθ.

We write ∆ps = ∆p̃s cos mθ, ∆pr = ∆p̃r cos mθ, ∆pθ = ∆p̃θ sin mθ,

where ∆p̃s , ∆p̃r , and ∆p̃θ are θ-independent.

For m = 0, ∆p̃r = ∆p̃θ = 0, otherwise they ∝ 1

r
, singular at r = 0.

For m 6= 0,
∂

∂r

[
r

∂

∂r
(r∆p̃r )

]
= m2∆p̃r =⇒ ∆pr (r , θ, z) ∼ mrm−1 cos mθ.
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Definition of Wake Functions
Formal solution can be written as{

v∆~p⊥ = −qQmWm(z)mrm−1
(
r̂ cos mθ − θ̂ sin mθ

)
,

v∆ps = −qQmW ′
m(z)rm cos mθ.

Defn:

{
Wm(z) −→ transverse wake function of azimuthal m

W ′
m(z) −→ longitudinal wake function of azimuthal m

They are function of z only and dependent on boundary conditions.
They are related because of P-W theorem.

Qm = eam is mth multipole of source particle of charge e.

Wm(z) has dimension V/Coulomb/m2m−1.

Recall that solution of ~E and ~B reduces to solution of Wm(z) only.
Simplification comes from P-W theorem or rigid-bunch and
impulse approximations.

negative sign in front is a convention to make W ′
m(z) > 0,

since witness particle loses energy from impulse.
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Some Properties of Wake Functions

z z

W
′

m
(z) Wm(z)

Fundamental Theorem of Beam Loading (P. Wilson)

A particle sees half of its wake, or 1
2W ′

m(0−).

Proof:
A particle of charge q passes a thin lossless cavity, excites cavity.

Energy gained ∆E1 = −fq2W ′
m(0−), i.e., sees fraction f of own wake.

Half cycle later, a 2nd particle of same charge passes the cavity.

Energy gained ∆E2 = −fq2W ′
m(0−) + q2W ′

m(0−).

Field inside cavity is completely cancelled.

∆E1 + ∆E2 = −2fq2W ′
m(0−) + q2W ′

m(0−) = 0 =⇒ f = 1
2 .
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Properties of Wake Functions
W ′

m(z) = 0 for z > 0. (causality)

W ′
m(0−) ≥ 0 (energy conservation)

|W ′
m(z)| ≤W ′

m(0−).

1st particle of charge q loses energy 1
2q2W ′(0−).

2nd particle of charge q loses energy 1
2q2W ′(0−) + q2W ′

0(z).

Total loss q2W ′(0−) + q2W ′
0(z) ≥ 0. Or W ′

0(z) ≥ −W ′
0(0−).

2nd particle of charge −q loses energy 1
2q2W ′(0−)− q2W ′

0(z).

Total loss q2W ′(0−)− q2W ′
0(z) ≥ 0. Or W ′

0(z) ≤W ′
0(0−).

W ′
m(−D) = W ′

m(0−) for some D > 0 =⇒ wake is of period D.

Energy loss:

1. 1
2q2

1W
′
0(0−).

z D

q1 q2 −q2

2. 1
2q2

2W
′
0(0−) + q1q2W

′
0(−z).

3. 1
2q2

2W
′
0(0−)− q1q2W

′
0(−z − D)− q2

2W
′
0(−D).

Since total must be ≥ 0 and q1 arbitrary, W ′
0(−z) ≥W ′

0(−z − D).

Change 3 charges to (q1, −q2, q2) to get W ′
0(−z) ≤W ′

0(−z − D).
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Area under W ′
m(z) is non-negative.

Consider a dc beam current I .

For a particle of charge q in the beam, energy loss is q

∫
W ′

0(z) I
dz

v
≥ 0.

For longitudinal, lowest azimuthal is m = 0 or W ′
0(z).

For transverse, lowest azimuthal is m = 1 or W1(z).

Higher azimuthals can be important for large transverse beam size
compared with pipe radius.
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Coupling Impedances

Beam particles form current. Component with freq. ω is
I (s, t) = Î e−iω(t−s/v).

A test particle crossing a narrow discontinuity at s1 gains energy

from wake left by particles −z in front (z <0). Voltage gained is

V (s1, t) = −
∫ ∞

−∞
[W ′

0(z)]1 Î e
−iω[(t+z/v)−s1/v ] dz

v

= −I (s1, t)

∫ ∞

−∞
[W ′

0(z)]1e
−iωz/v dz

v
≡ −I (s1, t)

[
Z
‖
0 (ω)

]
1

Defn: Z
‖
0 (ω) =

∫ ∞

−∞
W ′

0(z)e−iωz/v dz

v
(summing over all continuities)

Unlike a current in a circuit, a beam has transverse dimension and
therefore higher multipoles.

When the beam is off-center by amount a, the current mth multipole is
Pm(s, t) = I (s, t)am = P̂me−iω(t−s/v).
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Higher Azimuthal Impedances

At location i , test particle density is ρ = q
δ(r − a)

a
δ(θ)δ(s − si ).

Subject to the mth multipole element P(si , t+z/v)dz passes

location i −z earlier, voltage gained is

V (si , t) = −
∫

dz

v
Pm(si , t+z/v)[W ′

m(z)]i

∫
rdrdθ rmcos mθ

δ(r−a)δ(θ)

a

= −
∫

dz

v
P̂me−iω[(t+z/v)−s/v ][W ′

m(z)]ia
m

= −Qm

q
Pm(si , t)

∫ 0

−∞

dz

v
[W ′

m(z)]i e
−iωz/v [Qm = qam]

Identify mth multipole longitudinal impedance across location i as[
Z‖m(ω)

]
i
= − qV̂

QmP̂m

=

∫ ∞

−∞

dz

v
[W ′

m(z)]i e
−iωz/v .

Summing up around the vacuum chamber: Z‖m(ω) =
∑

i

[
Z‖m(ω)

]
i
.
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Transverse Impedances

General defn. for long. imp.: Z‖m(ω) =

∫ ∞

−∞

dz

v
W ′

m(z)e−iωz/v .

If we replace W ′
m by Wm, we obtain transverse impedances

Defn. Z⊥m (ω) =
i

β

∫ ∞

−∞

dz

v
Wm(z)e−iωz/v [Wm(z) = 0 when z >0]

Long. and transverse imp. are then related by Z‖m(ω) =
ω

c
Z⊥m (ω),

so that both Re Z
‖
m and Re Z⊥m represent energy loss or gain.

Transverse force, F⊥ ∝ −Wm, must lag Pm by
π

2
in order for

Re Z⊥m to dissipate energy. Hence the factor i .

The factor β is to cancel β in Lorenz force, just a convention.
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Direct Computation of Impedances
Z⊥1 can also be derived directly from the transverse force F⊥1

without going through Z
‖
1 .

When current I (s, t) = Î e−iω(t−s/v) is displaced by a transversely

from axis of symmetry, deflecting force acting on a test particle is

〈F⊥1 (s, t)〉 = −q

∫ ∞

−∞
W1(z)aÎ e−iω[(t+z/v)−s/v ] dz

v

= −qaI (s, t)

∫ ∞

−∞
W1(z)e−iωz/v dz

v
=

iβqI (s, t)a

L
Z⊥1 (ω).

〈· · · 〉 implies averaged over all preceding particles.

For transverse: Z⊥1 (ω) = − i

qÎ aβ
〈F̂⊥1 〉.

For longitudinal: Z
‖
0 (ω) = − 1

qÎ
〈F̂ ‖0 〉.

Other than from wake fcns, these are formulas employed to compute

imp. directly from the long. and trans. forces seen by test particle.
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W1(z)aÎ e−iω[(t+z/v)−s/v ] dz

v

= −qaI (s, t)

∫ ∞

−∞
W1(z)e−iωz/v dz

v
=

iβqI (s, t)a

L
Z⊥1 (ω).

〈· · · 〉 implies averaged over all preceding particles.

For transverse: Z⊥1 (ω) = − i
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For transverse: Z⊥1 (ω) = − i

qÎ aβ
〈F̂⊥1 〉.

For longitudinal: Z
‖
0 (ω) = − 1

qÎ
〈F̂ ‖0 〉.

Other than from wake fcns, these are formulas employed to compute

imp. directly from the long. and trans. forces seen by test particle.
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Some Properties of Impedances

1 Z‖m(ω) =
ω

c
Z⊥m (ω) (P-W theorem).

2 Z
‖
m(−ω) =

[
Z
‖
m(ω)

]∗
and Z⊥m (−ω) = −

[
Z⊥m (ω)

]∗ [
Wm(z) is real

]
3 Z

‖
m(ω) and Z⊥m (ω) are analytic, poles only in lower half ω-plane.

Wm(z) = − iβ

2π

∫ ∞

−∞
Z⊥m (ω)e iωz/vdω

W ′
m(z) =

1

2π

∫ ∞

−∞
Z‖m(ω)e iωz/vdω

Causality: Wm(z)=W ′
m(z)=0

when z >0.

Singularities cannot occur

in upper ω-plane.

Re Z‖m(ω) =
1

π
℘

∫ ∞

−∞
dω′
Im Z

‖
m(ω′)

ω′ − ω
, Im Z‖m(ω) = − 1

π
℘

∫ ∞

−∞
dω′
Re Z

‖
m(ω′)

ω′ − ω
.

4 Re Z
‖
m(ω) ≥ 0 and Re Z⊥m (ω) ≥ 0 when ω > 0, if beam pipe has

same entrance and exit cross section. (no accelerating forces)

5

∫ ∞

0

dω Im Z⊥m (ω) = 0 and
∫ ∞

0

dω
Im Z

‖
m(ω)

ω
= 0.
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General Comments
Wm(z)=0, W ′

m(z)=0 when z > 0 because of causality.

It is awkward to deal with negative z . Some like to use z > 0 for

particle following. Then Wm(z)=0, W ′
m(z)=0 when z < 0.

Then instead of

Z‖m(ω) =

∫ ∞

−∞
e−iωz/vW ′

m(z)
dz

v
, Wm(z) = − iβ

2π

∫ ∞

−∞
Z⊥m (ω)e iωz/vdω

we have

Z‖m(ω) =

∫ ∞

−∞
e iωz/vW ′

m(z)
dz

v
, Wm(z) = − iβ

2π

∫ ∞

−∞
Z⊥m (ω)e−iωz/vdω

and W ′
m(z) = −dWm(z)

dz
. ←− note negative sign

All properties of the impedances remain unchanged, including no singularity

in upper half ω-plane.

Some may like to use j instead of i to denote imaginary value.

Most of the time j = −i . Then Z
‖
m and Z⊥m have no singularity

in lower half ω-plane instead.
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Space-Charge Impedances

Sp-ch imp. come from EM fields

of beam even when beam pipe

is smooth and perfectly connducting.

Want to compute Es due to variation

of linear density λ(s − vt).

Assume small variation of trans. dist.

a

Es

v

b

s s + ds

Faraday law:
∮

~E ·
−→
d` = − ∂

∂t

∫
~B ·d~A.

uniform dist. assumed
↓∮

~E ·
−→
d` = Esds − eλ(s−vt)

2πε0

[∫ b

a

dr

r
+

∫ a

0

rdr

a2

]
+

{
s → s + ds

}

Geometric factor g0 = 2

[∫ b

a

dr

r
+

∫ a

0

rdr

a2

]
= 1 + 2 ln

b

a
.
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Electric field or left side:
∮

~E ·
−→
d` = Esds +

eg0

4πε0

∂λ

∂s
ds.

Magnetic field or right side:

− ∂

∂t

∫
~B ·d~A =− ∂

∂t

µ0eλ(s−vt)v

2π

[∫ a

0

rdr

a2
+

∫ b

a

dr

r

]
ds =v2 eµ0g0

4π

∂λ

∂s
ds.

Long. field seen by particles on-axis: Es = − eg0

4πε0γ2

∂λ

∂s
.

Consider a long. harmonic wave λ1(s; t) ∝ e i(ns/R−Ωt) perturbing

a coasting beam of uniform linear density λ0.

Voltage drop per turn is V = Es2πR =
ineZ0cg0

2γ2
λ1 =

inZ0g0

2γ2β
I1.

The wave constitutes a perturbing current of I1 = eλ1v .

Imp. is
Z
‖
0

n

∣∣∣
sp ch

=
iZ0g0

2γ2β
with g0 =1+2 ln

b

a
.

[
Z0 =

√
µ0

ε0
=

1

ε0c
=µ0c

]
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Comments
Z
‖
0

n

∣∣∣∣
sp ch

= i
Z0g0

2βγ2
is independent of freq., but rolls off when ω &

γc

b
.

Z
‖
0

∣∣∣
sp ch

∝ ω, resembling a neg. inductive imp. rather than a cap. imp.

For a freq.-independent reactive imp.
Z
‖
0

n

∣∣∣∣
sp ch

, corr. wake is

W ′
0(z) = δ′(z)

[
− iRcβ

Z
‖
0

n

]
reactive

= δ′(z)
Z0cRg0

2γ2
.

Longitudinal reactive impedance results from a longitudinal reactive

force F
‖
0 (s, t) =

ie2v

2π

Z
‖
0

n

∣∣∣∣
reactive

∂λ(s, t)

∂s
.

This force modifies the bunch shape, called potential-well distortion.

Below/above transition, capacitive force lengthens/shortens the bunch.

Below/above transition, inductive/capacitive force can generate

micro-bunching and eventual microwave instabilities.
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Space-Charge Compensation at PSR

Since Z
‖
0 |sp ch is just a negative inductance, an inductance can cancel

the space-charge force. As an example, ferrite rings are placed in Los
Alamos PSR to cancel space-charge force so as to shorten the bunch.

Experiment, PW = 50 ns

Bias off

Bias on

C
ur

re
nt

 (
ar

bi
tr

ar
y 

un
it

s)

time (ns)

Simulation, PW = 50 ns

Bias off

Bias on

C
ur

re
nt

 (
ar

bi
tr

ar
y 

un
it

s)

time (ns)

Experiment, PW = 150 ns

Bias off

Bias on

C
ur

re
nt

 (
ar

bi
tr

ar
y 

un
it

s)

time (ns)

Simulation, PW = 150 ns

Bias off

Bias on

C
ur

re
nt

 (
ar

bi
tr

ar
y 

un
it

s)

time (ns)

When 900-A bias is on,
µ′ of ferrite rings is
reduced by 34%.

Bunches become longer
when bias is on.
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However, resistive part of the ferrite, if too high, can generate
microwave instabilities.

∼ 500 µs

into PSR
storage

with 3 ferrite
tuners.

20 120 220 320 420 520 620 720
−2

−1

0

1

2

3

Time in ns

C
ur

re
nt

 in
 A

m
ps

.

Heating ferrite increases µ′ and decreases µ′′.

Using 2 instead of 3 of ferrite tuners and

heating to 130◦ C alleviates the instabilities.
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Other Transverse Beam Distribution
The former geometric factor g0 was computed according to

uniform transverse distribution.

It is easy to compute g0 for any transverse distributions.

We can also retain the form of g0 for uniform distribution by

introducing an effective beam radius aeff such that g0 = 1 + 2 ln(b/aeff).

Phase space distribution g0 aeff

Uniform
1

πr̂2
H(r̂ − r) 1 + 2 ln

b

r̂
r̂

Elliptical
3

2πr̂

(
1− r2

r̂2

)1/2

H(r̂ − r)
8

3
− 2 ln 2 + 2 ln

b

r̂
0.8692r̂

Parabolic
1

2πr̂2

(
1− r2

r̂2

)
H(r̂ − r)

3

2
+ 2 ln

b

r̂
0.7788r̂

Cosine-square
2π

π2 − 4
cos2

πr

2r̂
H(r̂ − r) 1.9212 + 2 ln

b

r̂
0.6309r̂

Bi-Gaussian
1

2πσ2
r

e−r2/(2σ2
r ) γe + 2 ln

b√
2σr

1.747σr
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Transverse Impedance from Self-Field

A uniformly distributed

beam is shifted by ∆ in

x-direction. There is a

horizontal opposing force.

Hence the imp.

Beam density

ρ(r) =
eλ

πa2
H(a− r).

+

θ

a
+

+

+

+

−

−

−

−

Shift to the right by ∆→ 0

y y

x x

r a

+

+

+

Dipole density

∆ρ(r) = −∂ρ(~r)

∂x
∆ =

eλ∆ cos θ

πa2
δ(a− r).

Dipole sees opposing electric force

Felec =

∫ 2π

0

dθ

∫ ∞

0

rdr
e2λ∆ cos θ

πa2
δ(a− r)

cos θ

2πε0r
=

e2λ∆Z0c

2πa2
.
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The shifted beam current I = eλβ also generates a dipole current

∆I = eβ
∂λ

∂x
∆, and therefore a magnetic horizontal Fmag

x .

Fmag
x = −βF elect

x . Total is 1− β2 = 1/γ2,

Total self-force
∫ C

0

Fselfds =
e2λ∆Z0cR

γ2a2
.

With beam current I = eλβ, trans. imp. is

Z⊥1
∣∣
self

=
i

βeI∆

∫ C

0

Fselfds = i
Z0R

γ2β2a2
.

Particle beam generates static charges and image current on beam pipe.

So there is a similar trans. force but in opposite direction.

Total is sp-ch imp.: Z⊥1
∣∣
sp ch

= i
Z0R

γ2β2

(
1

a2
− 1

b2

)
.

The dependence on a−2 appears to resemble the incoherent self-field
tune shift ∆νself .

Actually Z⊥1
∣∣
self

and ∆νself are even proportional to each other.
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Coherent, Incoherent, and Impedance Forces

Vertical force on a beam particle
d2y

ds2
+

ν2
0y

R2
y =

F (y , ȳ)

γmv2
.

For small offsets,
d2y

ds2
+

ν2
0y

R2
y =

1

γmv2

(
∂F

∂y

∣∣∣∣
ȳ=0

y+
∂F

∂ȳ

∣∣∣∣
y=0

ȳ

)
.

For center of mass,
d2ȳ

ds2
+

ν2
0y

R2
ȳ =

1

γmv2

(
∂F

∂y

∣∣∣∣
ȳ=0

+
∂F

∂ȳ

∣∣∣∣
y=0

)
ȳ .

Thus ∆νy inc ∝
∂F

∂y

∣∣∣∣
ȳ=0

∆νy coh ∝
∂F

∂y

∣∣∣∣
ȳ=0

+
∂F

∂ȳ

∣∣∣∣
y=0

But Z⊥1 ∝
∂F

∂ȳ

∣∣∣∣
y=0

,

∴ Impedance Shift = Coherent Shift− Incoherent Shift.
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ȳ=0

∆νy coh ∝
∂F

∂y

∣∣∣∣
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∂ȳ

∣∣∣∣
y=0

,

∴ Impedance Shift = Coherent Shift− Incoherent Shift.

K.Y. Ng (Fermilab) Coupling Impedances in Accelerator Rings November, 2009 27 / 88



Coherent, Incoherent, and Impedance Forces

Vertical force on a beam particle
d2y

ds2
+

ν2
0y

R2
y =

F (y , ȳ)
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∆νy coh: result of all forces acting on center of beam at ȳ .

Z⊥1 : force generated by center motion of beam on individual particle.

Example: a beam between two infinite horizontal conducting planes.

Horizontal translational invariance =⇒ horizontal image force acting

at center of beam vanishes independent of whether beam is oscillating

horizontally or vertically. ∴ ∆νx coh = 0.

Single bunch tune shift measurement at CERN SPS.

0 2 4 6 8 10 0 2 4 6 8 10

Bunch Intensity 1010 Bunch Intensity 1010
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Now let us come back to the self-field imp.

Beam center moves with beam, does not see self-force, ∴ ∆νself
y coh = 0.

Thus ∆νimp
y ∝ −∆νself

y incoh.

Or Z⊥1
∣∣y ,x

self
= −i

2πZ0γν0y ,x

Nr0
∆νself

y ,x incoh,

where N is the number of beam particles, r0 is classical radius.

As for the EM field inside the vacuum chamber,

Z y ,x
1 = −i

2Z0R

γ2β2

ξ1y ,x− ε1y ,x

h2
,

where ξ1y ,x/ε1y ,x is Laslett coherent/incoherent electric image coeff.,

h is vertical half gap in vacuum chamber.

For circular beam pipe of radius b, h = b, ξ1y ,x = 1
2 , ε1y ,x = 0.

then Z y ,x
1 = −i

Z0R

γ2β2b2
is just vacuum chamber contribution to

the trans. sp-ch imp.
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Self-Field Impedance with Other Distributions

Shifted dipole density is ∆ρ(r) = −∂ρ(r)

∂y
∆ = −dρ(r)

dr
cos θ ∆.

Dipole electric force in the horizontal direction can be written

more generally as

Felec = −∆

∫ 2π

0

dθ

∫ ∞

0

rdr

[
−e2 dρ(r)

dr

]
cos2 θ

2πε0r
= −e2ρ(0)∆

2ε0
.

Self-field imp. Z⊥1

∣∣∣
self

= i
Z0R

γ2β2

πρ(0)

λ
.

[
uniform dist. ρ(0) =

eλ

πa2

]

If we write Z⊥1

∣∣∣
self

= i
Z0R

γ2β2a2
eff

, same form as uniform distribution,

equivalent beam radius is aeff =

√
λ

πρ(0)
.

λ is linear density, ρ(0) is volume density at beam center.
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Phase space distribution aeff

Uniform
1

πr̂2
H(r̂ − r) r̂

Elliptical
3

2πr̂

(
1− r2

r̂2

)1/2

H(r̂ − r)

√
2

3
r̂

Parabolic
1

2πr̂2

(
1− r2

r̂2

)
H(r̂ − r) 1√

2
r̂

Cosine-square
2π

π2−4
cos2

πr

2r̂
H(r̂ − r)

√
π2−4√
2π

r̂

Bi-Gaussian
1

2πσ2
r

e−r2/(2σ2
r )

√
2σr
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Resistive Wall Impedance

Consider a particle beam of current I in a cylindrical beam pipe of
radius b.

Want to compute resistive-wall impedance.

Proper method: solve Maxwell equation in 2 media: vacuum and metal.

We use here a simple model.

At freq. ω, skin depth: δc =

√
2

σcµcω
.

Assume image current flows uniformly

in one skin depth only;

i.e., within b < r < b + δc

Iim

I

b

δc

Bθ

Re Z
‖
0

∣∣∣
RW

=
2πR

2πbδcσc
=

R

bδcσc
.
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Now the image current generates magnetic flux.

We have taken care of those inside the beam pipe as sp-ch imp.

Need to take care of mag. flux inside beam pipe wall.

Inside one skin depth of the pipe wall Bθ av = 1
2

[
µc I

2πb

]
.

Factor 1
2 occurs because Bθ decays linearly from r = b to b + δc .

Total flux Φ = Bθ av2πRδc =
µcRδc I

2b
.

Inductive imp. is ↓ δ2
c ↓ same as Re Z

‖
0

∣∣∣
RW

Im Z
‖
0

∣∣∣
RW

= −iω
µcRδc

2b
= −i

ωµcR

2bδc

[
2

σcµcω

]
= −i

R

bδcσc
.

We can now write

Z
‖
0

∣∣∣
RW

=
[
1− i sgn(ω)

] R

bδcσc
=
[
1− i sgn(ω)

]√ωµc

2σc

R

b
.
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Comments

We can now write Z
‖
0

∣∣∣
RW

=
[
1−i sgn(ω)

] R

bδcσc
= R2πR

2πb
.

where surface impedance is defined as R =
1−i sgn(ω)

δcσc
.

Z
‖
0

∣∣∣
RW

= R long. length
width

. More accurate defn. R =
Es

H⊥

∣∣∣∣
surface

.

One may wonder why Re Z
‖
0

∣∣∣
RW
→ 0 when ω → 0.

One may expect a dc beam still sees the resistivity of the pipe wall.

ω = 0 implies no time dependency of ~B and ~E .

Then ~B and ~E are not related because there is no more Faraday’s law.

~B created by the dc current cannot generate ~E on surface or

inside wall of beam pipe.

Thus is no resistive loss at ω = 0 and Re Z
‖
m

∣∣∣
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1−i sgn(ω)
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bδcσc
= R2πR

2πb
.

where surface impedance is defined as R =
1−i sgn(ω)

δcσc
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Z
‖
0

∣∣∣
RW

= R long. length
width

. More accurate defn. R =
Es

H⊥

∣∣∣∣
surface

.
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Transverse Resistive Wall Impedance

Compute image current distribution for an off-set beam.

I

y

z

x

(a)

θ −I

P

bO
I

(b)

b

∆

∆

b2/∆
∆Z

‖
0

∣

∣

∣

RW

=
RL
w

∆I = Jzwδc

w

Dipole image current density ↓ monopole

∆Jz(θ) = − I∆

2πb

[
2∆(b cos θ −∆)

b2 + ∆2 − 2b∆ cos θ
− 1

]
≈ − I∆

πb2
cos θ.

Voltage generated by image current element for length L at θ = 0 is

V = δI δZ
‖
0

∣∣∣
RW

=

[
− I∆

πb2
w

] [
Z
‖
0

∣∣∣
RW

2πb

w

]
= −2I∆

b
Z
‖
0

∣∣∣
RW

= Ez0L,

where Ez0 = −
2I∆Z

‖
0

∣∣∣
RW

bL
is Ez on surface of beam pipe at θ = 0.
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Because this is generated by a dipole beam, Ez(x) = Ez0
x

b
,

Faraday law gives iωBy = −∂Ez

∂x
=⇒ By = − iEz0

ωb
.

By clinging the dipole current loop, creating a horizontal opposing force.

Z x
1 =

i

βI∆

∫ C

0

[
~E + ~v × ~B

]
x
ds =

2c

b2

Z
‖
0

∣∣∣
RW

ω
.

Note that Z⊥1 =
2c

b2ω0

Z
‖
0

∣∣∣
RW

n

[
not P-W relation!!!!

]
Z⊥1 and

Z
‖
0

∣∣∣
RW

n
are proportional for all frequencies.

But as we will see below, this is not true at low frequencies.
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Instabilities from Resistive-Wall Impedances

For a coasting beam, all betatron sidebands are independent modes.

Thus Z
‖
1

∣∣∣
RW

excites all modes.

Z
‖
1

∣∣∣
sp ch

shifts incoherent tune spread away from coherent tune lines and

large chromaticities are often required for Landau damping.

Examples in Recycler

Long p̄ beam
τ = 3.5 µs
Nb = 28× 1010

εx,y95% = 3× 10−6 πm
ξy = −2→ 0.

p beam unbunched

Nb = 43.9× 1010

εx,y95% = 6× 10−6 πm

ξy = −2→ 0.

0 10 20 30 40 50 60 70 80
Revolution Harmonic n

10
−6

10
−5

10
−4

10
−3

10
−2

F
F

T

June 9 Antiprotons

time
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All modes become stable in the presence of ∆νsp ch
y when chromaticity

ξy = −2.53.

∆νsp ch
y

∣∣
av

= 14.2×10−4

ξy = −2.53 produces

σ∆νy = 8.59× 10−4. −1 −0.8 −0.6 −0.4 −0.2 0
 0.0

average

rms

av. incoh shift

2 rms spread from chromaticity

Coherent
excitation

For higher p̄ intensity, higher ξy is required.

Eventually a transverse kicker was built instead.

Situation is different when beam is bunched. Driving impedance is

Zy =
∞∑

p=−∞
Z y

1 (Ω + pω0)h(Ω + pω0)

where h is bunch power spectrum and Ω = ωy0 + ∆ωy coh.

Growth of many lower sidebands are cancelled by damping of upper

sidebands, net growth will be much milder than for unbunched beam.
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Transverse Coupled Bunch Instabilities

For the Tevatron in target mode, if there are M = 1113 equally spaced

bunches, there can be M modes of coupled motion.

Each mode is driven by the imp. Zy mµ =
∑

q

Z y
1 (Ω+ωq)hm(ωq−χ/τL),

with ωq = (qM+µ)ω0 + ωβ + mωs .

For each coupled mode µ,

not all betatron sidebands

contribute, but every Mth

sideband contribute.

Thus upper sidebands can no longer cancel growth from lower

sidebands. Strongest drive is the sideband at negative freq. closest to
ω = 0, or at ω = −

(
1− [νy ]res

)
ω0. It acts like a narrow resonance.
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Remedy

Change shape of bunch of power spectrum, like longer bunch,

does not help much, because driving force is at very low freq.

There are a few ways to minimize or avoid the instability:

Chromaticity will certainly help by

1 Widening tune spread to provide more Landau damping.

2 Shifting driving betatron sideband to freq. with smaller power spectrum.

3 Tevatron: η = 0.0028, τL = 5ns, f0 = 47.7 Khz.

ξ = +10 shifts power spectrum by χ = ωξτL = 2πf0ξτL/η = 5.4.

4 Power spectrum reduces by > 4 folds, and so is instability growth rate.

5 But driving sideband hits m = 1 when ωξτL/π = 1.7.

Or high azimuthal modes become unstable.

Octupole tune spread provide Landau damping.

Coat beam pipe with copper to reduce resistive-wall impedance.

Install wideband transverse kicker.
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Scaling Law
Apply to bunches that go from one accelerator ring to another,
like the Booster, Main Injector, and Tevatron.

Weiren Chou shows that this transverse coupled bunch instability
growth rate is the same for all the rings, provided that

1 same rf bucket width with all bucket filled,
2 same beam pipe, meaning same radius b and wall conductivity σc

3 same residual betatron tune.

Roughly, beam current the same for completely filled ring,
ω0 ∝ 1/R, E ∝ R, νβ ∝

√
R =⇒ same growth rate

Typical growth time is a few or few tens ms.

Problem: Booster bunches see laminated magnets,
resistive impedance must be much larger.

Transverse coupled bunch instability is very milder in Booster,
where there is no dedicated transverse damper.

Something must be wrong with the expressions for resistive-wall
impedance, especially at small frequencies.
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Problems with Z⊥1

Recall that we derived Z⊥1 (ω)=
2c

b2

Z
‖
0

ω
and Z⊥1 →

1√
ω

as ω → 0.

Skin depth δc increases as ω−1/2. When δc > t, wall thickness,

must replace δc → t. Thus Z⊥1 →
1

ω
faster than

1√
ω

.

Both Z
‖
0 (ω) and Z⊥1 (ω) are analytic, because they are derived from

causal wake functions W ′
0(z) and W1(z).

We know that Z
‖
0 (ω) is more well behaved,

but Z⊥1 (ω) is not.

We also showed that there is no resistive loss
at ω = 0. So we should expect Re Z⊥m (0) = 0.

Re Z⊥1 (ω) must bend back to zero.

Im Z⊥1 (ω) will approach a fixed value

instead of infinity as ω → 0.

ω

ReZ
⊥
1

−ImZ
⊥
1
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Z⊥1 near ω = 0
Best method is to solve Maxwell equation carefully,

will get Re Z⊥m = 0 and Im Z⊥m = constant as expected.

Here, we follow an easier instuitive approach by Vos (CERN).

Dipole surface current on pipe wall is ∆Kz(θ)=
Iim∆

πb2
cos θ. (∆= offset)

Total image current on each side: Id =

∫ π/2

−π/2

∆Kz(θ)bdθ =
2iIim∆

πb
.

Want to compute inductance seen by ±Id loop.

Mag. field from ±Id on x-axis: Hy (x) = − iim∆

2πb2
. (Iim = −I )

Flux is Φy =

∫ b

−b

Bydx = 2bBy = −µ0Iim∆

πb
= −µ0

2
Id .

Inductance seen by ±Id loop is L =
µ0

2
.

But inductance seen by beam current I is different.

There is some sort of transformer effect as a result of the shift ∆.
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Transformer Ratio

Introduce mutual inductance M: −iωM(Iim − Id) = −iω(L −M)Id ,

Get
M
L

=
Id
Iim

=
2∆

πb
,

This is a geometric relation.

Force at beam: Fx = e(Ex − βcBy ).

Imp.:
Z⊥1
L

=
(Fx/e)mag

iβI∆
=−cBy

iI∆
=

cµ0Id
i4∆b I

= i
Z0

2πb2
.

capacitive ↑

L
Iim

M

Id

This is the familiar imp. from magnetic image.

Electric image gives similar, total
Z⊥1
L

= −i
1

γ2β2

Z0

2πb2
. ← sp ch imp.

Here we wish to emphasize that task of above is two-fold:

1. contributes to sp ch imp.

2. contributes to transformer ratio.
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Inclusion of Resistivity

Recall
Z
‖
0

∣∣
RW

L
=
R

2πb
, R is surface imp.

For a length L, voltage generated:

V (θ) = 2

[
RL

w

][
w∆Kz(θ)

]
=
RLId

b
cos θ.

V̂

L
=
RId
b

= 2π
Z
‖
0

∣∣
RW

L
Id = ZId .

V̂ =ZId

L
Iim

M

Z

Id

On pipe wall surface Êz = 1
2

V̂

L
= 1

2ZId . (Note factor 1
2 )

Now compute impedance:
Fx

e
= Ex − vBy =

v

iω

∂Ez

∂x
=

vZId
i2ωb

.

Z H
1

∣∣
RW

L
=

Fx/e

iβI∆
= − cZId

2ωbI∆
= − cπ

ωb

Id
I∆

Z
‖
0

∣∣
RW

L
.

What is left is to compute the ratio Id/I in presence of resistivity.

Although
M
L

=
2∆

πb
is unchanged,

Id
I

has changed and 6= −2∆

πb
.
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Inclusion of Resistivity

Recall
Z
‖
0

∣∣
RW

L
=
R

2πb
, R is surface imp.

For a length L, voltage generated:

V (θ) = 2

[
RL

w

][
w∆Kz(θ)

]
=
RLId

b
cos θ.

V̂

L
=
RId
b

= 2π
Z
‖
0

∣∣
RW

L
Id = ZId .

V̂ =ZId

L
Iim

M

Z

Id

On pipe wall surface Êz = 1
2

V̂

L
= 1

2ZId . (Note factor 1
2 )

Now compute impedance:
Fx

e
= Ex − vBy =

v

iω

∂Ez

∂x
=

vZId
i2ωb

.

Z H
1
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RW

L
=

Fx/e

iβI∆
= − cZId

2ωbI∆
= − cπ

ωb

Id
I∆

Z
‖
0

∣∣
RW

L
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−iωM(Iim − Id)

= [−iω(L −M) + Z] Id .

obtain

Id
Iim

=
2∆

πb

−iωL
−iωL+ Z

Iim

Wall imp.V̂ =

bypass

ZId
L

Iim

M

Z

Id

Z
‖
0

L
Inductive

L
2π = µ0

4π

Finally the imp.
Z H

1

∣∣
RW

L
=

2c

ωb2

−iωL
2π

Z
‖
0

∣∣
RW

L

−iωL
2π

+
Z
‖
0

∣∣
RW

L

. ← 2 imp. in parallel

Thus Z H
1 is just 2 impedances in parallel:

−iωL
2π

and
Z
‖
0

∣∣
RW

L
.

Large ω, go thru
Z
‖
0

∣∣
RW

L
and

Z H
1

∣∣
RW

L
→ 2c

b2

Z
‖
0

∣∣
RW

ωL
. ← classical region

Small ω, go thru
−iωL

2π
and

Z H
1

∣∣
RW

L
→ −icL

πb2
=
−iZ0

2πb2
. ← inductive bypass
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Results of Maxwell Equations
Tevatron: R = 1 km, pipe radius b = 3 cm, wall thickness t = 1.5 mm.

s.s. wall σc = 1.35× 106 (Ω-m)−1.

Skin depth fills pipe wall at fc = 83.4 Hz (kb = 5.24× 10−5).

Bend-around between kb ∼ 4

Z0σcb
= 2.6×10−7 (f ∼ 0.4 kHz)

and kb ∼ 2

Z0σct
= 2.6×10−6 (f ∼ 4.2 kHz)

νy = 19.6 and (1−Q) line at 19.1 kHz (kb = 1.2).
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Comments

It appears that fbend depends on σc , b, and t only, and not on

size and energy of ring.

fbend ∼ 0.4 to 4 kHz.

Unless fbend ∼ f0, low ω region is of no importance at all.

Tevatron: f0 = 47.7 kHz� fbend.

LHC: f0 = 11.3 kHz, may start to see effect of the bend-around region.

VLHC: f0 = 1.3 kHz =⇒ (1− Q) driving sideband will be

inside low-ω region.

Will show later that low-ω region is important to Booster.

First let us review some measurement of Z⊥
1 at low ω by Mostacci et al.

Measurement was performed to understand low ω effect to LHC.
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Direct Measurement of Z⊥1 (ω)
Current I was passed into a N-turn loop Lw = 1.25 m long and
∆ = 2.25 cm wide, inside a s.s. beam pipe of length L = 50 cm and
radius b = 5 cm, wall thickness t = 1.5 mm.

Iim → B → V on loop thru imp. Zpipe of pipe.

Then Z⊥1

∣∣∣
RW

=
c

ω

Zpipe − ZPC

N2∆2
, where ZPC is same as Zpipe

but with a perfectly conducting pipe instead.
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Comments on Measurement

N = 10 was chosen as a compromise to improve signal and to keep
lowest self-resonance above 1 MHz.

A dipole particle beam sees both magnetic and electric images in wall.
The two cancelled when γ →∞.

The dipole current loop sees only magnetic image but not electric.
This magnetic contribution must be subtracted,
leaving us with the Z⊥1 we are after.

A perfectly (PC) conducting pipe will just produce this magnetic
contribution. So such a subtraction is necessary.

Actually a copper pipe was used as PC.
σc Cu = 5.88× 107 (Ωm)−1

σc SS = 1.35× 105 (Ωm)−1 (σc Cu/σc SS = 44)

Measured impedance for copper pipe:
Re Z⊥1 almost zero because of small resistivity.

Im Z⊥1
L

=
iZ0

2πb2
= i23 Ω/m/m. (capacitive)
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Laminations
The beam sometimes sees a laminated surface rather than a smooth
one, like Lambertson magnets and laminated combined-fcn magnets.

These surfaces can be approximated as

2 parallel laminated plates

or

a laminated annular ring.
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beam

Want to compute the impedance seen by the beam.

crack lamination
Width or thickness h=0.000375′′ τ =0.025′′

Relative mag. suseptibility µ1r =1 µ2r =100
Relative dielectric ε1r =4.75 ε2r =1
Conductivity σc1 =1.0×10−3 (Ω-m)−1 σc2 =0.5×107 (Ω-m)−1
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Crack Impedance

Solve Maxwell eq.
1

r

∂

∂r

(
r
∂Ez

∂r

)
+ q2Ez = 0

to get Ez across crack

and then surface imp. Rc .

z

beam

region 1

region 2

r

h/2

b
d

−h/2

Solution for annular-ring model

Rc

Z0
= − Ez(b)

Z0Hθ(b)
=

jqc

ε1rω

J0(qb)N0(qd)− N0(qb)J0(qd)

J1(qb)N0(qd)− N1(qb)J0(qd)
,

with q2 = k2
i + g2

i , i = 1, 2.

q is trans. wave numbers, k2
1 = ω2µ1ε1, k2

2 = ω2µ2ε2 =
2i

δ2
2c

.

Longitudinal decrement: g1 = (1+i)k2
1

µ2

µ1

δ2c

h
, g2 ∼

1−i

δ2c
.
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Crack Impedance
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Low-Frequency Behavior

At low ω > 0, use small-argument expansion to get
Rc

Z0
→ (1− i)

ωδ2cb

ch
µ2r ln

d

b

This can be shown to be imp. seen by Iim going in and out of crack

penetrating δ2c into laminations.

The model is therefore good when lamination thickness τ > δ2c ,

or when f ≥ c

πZ0σ2cµ2rτ 2
= 1.26 kHz.

For bend-around of Z⊥
1 , compare with bypass ind. Zbypass =

ωZ0

4πc
,

or

∣∣∣∣(1− i)
2δ2cµ2r

τ
ln

d

b

∣∣∣∣ ∼ 1.

For b = 1.25′′ and d = 6′′, get fbend ∼ 250 MHz.

(∼ 100 MHz in actual computation).

Small-argument expansion good for f � 5 MHz.
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High-Freqency Behavior
At high ω, large-argument expansions of H

(1),(2)
0 and H

(1),(2)
1 give

Rc

Z0
=

jqc

ε1rω
tan q(d − b).

Like a cavity, but filled
with dissipative medium.

Resonances will be
damped, except maybe
the first one.

The crack also acts like a
capacitance in parallel
with surface impedance.
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High ω, Iim flows across crack as displacement current more easily.

But at low ω, Iim has to flow thru surfaces of each crack; expect large imp.

K.Y. Ng (Fermilab) Coupling Impedances in Accelerator Rings November, 2009 54 / 88



Application to Booster

Booster consists of 48 F and 48 D laminated magnets.
Vertical gap: 2b = 1.64′′ (F) and 2b = 2.25′′ (D).
Magnet height: 2d = 12′′.

Calculation and Measurement of Z
‖
0 of 96 Booster magnets:
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Crisp’s Measurement

Measurement was made by Crisp using a current in a wire.

K.Y. Ng (Fermilab) Coupling Impedances in Accelerator Rings November, 2009 55 / 88



Z V

1 of Booster Lamination Magnets

See inductive bypass at low
freq.

Re Z V
1 bends around

∼ 70 MeV

No ω−1/2 behavior at low
freq.
Broad-band from 70 MeV
to 200 MHz.
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−imaginary

Real

Real
−Imaginary

Relatively high bend-around freq. is result of high lamination imp.

Will not drive trans. coupled bunch instabilities.

Since |Z V
1 | is large (∼ 20 MΩ/m), will drive head-tail instabilities.
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Beam Pipe Contribution

Lamination magnets cover ∼ 60% of the Booster ring,
leaving ∼ 40% with beam pipes.

These s.s. beam pipes will exhibit ω−1/2 behavior near revolution
frequency, and will drive coupled-bunch instabilities.

6-m long straight section joining 2 D-magnets: 2.25” s.s. pipe
1.2-m short straight section joining 2 F-magnets: 4.25” s.s. pipe
0.5-m straight joining D- and F-magnets: 2.25” s.s. pipe.

These pipes amount to Z V

1

∣∣
RW

= (1− i)
0.20√

n
MΩ/m.

For νy = 6.7, they can drive the (1−Q) mode with growth rate 337 s−1

(τ = 3.0 ms) at injection energy (400 MeV).

Chromaticity is ineffective in shifting power spectrum because of large
η = −0.458.

However, during the ramp, growth rate decreases (with E−1)
|η| becomes smaller, making chromaticity more effective.

Thus transverse coupled-bunch instabilities can only be appreciable near
injection.
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Lambertson Magnets in Tevatron
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3 C0 Lambertson Magnets

During 2003 shutdown, 3 C0 Lambertsons for fixed target beam
extractions were removed.

These magnets served as dipoles with beam passing thru
the narrow 1” gap.

They will not drive transverse coupled-bunch instabilities, but head-tail
instabilities.
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Lambertson Magnets F0 in Tevatron
There are 4 F0 Lambertsons in Tevatron.

Unlike the C0’s, beam is in field-free region during
storage (vertical gap∼ 2.5′′).

Can compute Z V
1 by approx. as annular magnet.

Result is an order of mag. less than the C0’s.

Z V
1 had been measured by Crisp and Fellenz.

Attenuation S21 was measured along
2 parallel wires driven differentially.

The wires, ∆ = 1.0 cm apart, form a TEM

balanced transmission line, matched to
100 Ω with resistive L-pads and driven with
a 100 Ω broadband 180◦ hybrid splitter.

Imp. computed from Z V

1 = − c

ω∆2
2Zc lnS21
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Agreement of Im Z V
1 are good, but much smaller for the plateau region.
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Betatron Tune Shift in Booster

Betatron tune shifts were measured in Booster by X. Huang in 2008,

at 2, 4, 6, 8, 20-turn injection.

A pinger was turned on every 0.5 ms with 2-µs width for whole cycle.

Each segment of data, ∼ 0.5 ms long (225 to 200 turns), are analyzed

for coherent motion.

Betatron oscillation modes were
solved using ICA, and νy was
computed from FFT.

ICA routine increases accuracy of
measurement because all BPM data
are used.

Only data up to transition are used,
because of lack of H-V coupling
while pinger kicks horizontally.
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What Should be Included in Im Z V

1 ?

Assuming Gaussian distribution, ∆νy

∣∣
dyn

=
e2NbR

8π3/2βE0νyστ
Im Z V

1

∣∣∣
eff

.

Effective imp.: Im Z V
1

∣∣∣
eff

=

∫ ∞

−∞

dω

2π
Z V

1 (ω)e−ω2σ2
τ∫ ∞

−∞

dω

2π
e−ω2σ2

τ

.

To compare with experiment, we must compute
∆νy

∣∣
coh

= ∆νy

∣∣
dyn

+ ∆νy

∣∣
incoh

What should be included in Im Z V
1

∣∣∣
eff

?

Consider Im Z V

1

∣∣
SC

=
Z0

πβ2γ2

∑
i

Li

[
εV
sc

a2
V i

− ξV
1− εV

1

h2
i

]
.

Self-field part is cancelled by adding ∆νy

∣∣self
incoh

.

εV
1 -part is cancelled by adding the incoherent part.

So only ξV
1 -part should be included.

This is the coherent wall image contribution.
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The Coherent Wall Image Contribution

Coherent wall-image consists of
ξV
1

h2
i γ

2
=

ξV
1

h2
i

− β2 ξV
1

h2
i

the electric and magnetic contributions.

Beam pipe will contribute Im Z V
1 ∼ 24 MΩ/m.

Lamination surface is not perfect conductor, electric image may form
at back of laminations h̄i ∼ 8′′ � higap.

We write
ξV
1

h2
i γ

2
→ ξV

1

h̄2
i

+ β2 ξV
2

h2
i

.

ξV
1 → ξV

2 , − β2 → +β2 because of image in magnetic surface.

We have then Z V

1

∣∣
mag

=
Z0ξ

V
2

π

∑
i

Li

h2
i

.

This still has problems, since laminated surface is not perfect magnetic
surface. Cracks and laminations become more apparent at high freq.

More appropriate representation is what we have computed of Z V
1 for

laminated surface. When ω → 0, beam sees bypass inductance.
Higher frequency, beam sees laminations.
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Compare with Measurement

Other contributions including BPM’s, bellows,steps, etc. are small.

E.g., they contribute to only ∼ 0.4 MΩ/m in Tevatron up to 200 MHz.

Im Z V
1 is computed from tune-shift measurement and compared with

calculated dipole imp.
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Data point near 3000 turns involves error and should be excluded.

Agreement is satisfactory, although not perfect.
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Strip-Line BPM

Tevatron is equipped with strip-line BPM’s terminated at both ends.

Strip line and extruded beam pipe forms a transmission line of Zs = 50 Ω.

2 terminations are also of Zs .

We will see, for a short pulse (� `),

I front termination registers a positive pulse
followed by by a negative pulse

I rear termination registers nothing

Then Z
‖
0 and

Z⊥1 are derived. beam
2b

t
y

x

ℓ

t = 2ℓ/c

v = c φ0

Zs =L/C
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Zs

2

(
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2π

)[
I (t)− I

(
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βsc
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Zs
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(
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)[
I
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Strip-Line Longitudinal Impedances

For a beam current I (t) = I0e
−iωt , Vu(ω) =

Zs

2

(
φ0

2π

)
I0
(
1− e i2ω`/βc

)
.

Voltage seen by beam is Vb(ω) =

(
φ0

2π

)
Vu(ω),

since only a fraction of beam sees the gap.

Long. imp.: Z
‖
0

∣∣∣
BPM

=
Vb(ω)

I0
= Zs

(
φ0

2π

)2(
sin2 ω`

βc
− i sin

ω`

βc
cos

ω`

βc

)
.

Low freq.: purely inductive Z
‖
0

∣∣∣
BPM

−→ −iZs

(
φ0

2π

)2
ω`

βc
.

After ω >
πβc

2`
, Z

‖
0

∣∣
BPM

alternates between capacitive and inductive.

There is no resonance at all, which is the merit of this BPM.
However, this BPM is not so linear as the diagonal-cut one.

Power dissipated is P(ω) =
|Vu(ω)|2

2Zs
.
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Strip-Line Transverse Impedance

When beam I0 is offset by ∆ horizontally,

surface current density on beam pipe is J(θ; x0) = − I0∆ cos θ

πb2
.

Total current on right/left: IR/L =∓
∫ φ0/2

−φ0/2

I0∆ cos θ

πb2
bdθ=∓2I0∆

πb
sin

φ0

2
.

Voltage at right/left gap: VR/L = ±Zs
I0∆

πb
sin

φ0

2

(
1− e i2ω`/βc

)
.

Power dissipated: P =
1

2Zs
(|VL|2+|VR |2) = 4Zs

(
|I0|∆
πb

)2

sin2 φ0

2
sin2 ω`

βc
.

This power loss is also P =
1

2
(|I0|∆)2Re Z

‖
1

∣∣∣
BPM

.

Panofsky-Wenzel −→ Re Z H

1

∣∣∣
BPM

=
8Zs

π2b2

c

ω
sin2 φ0

2
sin2 ω`

βc
.

Hilbert transform −→ Z H

1

∣∣∣
BPM

=
c

b2

(
4

φ0

)2

sin2 φ0

2

Z
‖
0

∣∣∣
BPM

ω
.
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Some may have doubt about derivation via Z
‖
1 because

1. cylindrical symmetry is broken by strip-lines

2. P-W relation requires cylindrical symmetry.

The dipole current loop I0∆ links mag. flux and I0 sees an imp. Z.

Faraday Law: iωByL∆ = ZI0. (L = length of loop)

Trans. imp. is Z H

1 =
LvBy

iI0∆β
=

cZ
ω∆2

.

Z can be evaluated from

P =
1

2
|I0|2Z = 4Zs

(
|I0|∆
πb

)2

sin2 φ0

2
sin2 ω`

βc
.

Get Re Z H

1

∣∣∣
BPM

=
8Zs

π2b2

c

ω
sin2 φ0

2
sin2 ω`

βc
. ← same result as before

For vertical impedance, offset current in y -direction.

There is not net dipole image current on horizontal strip-lines.

No dissipation, therefore Z V
1 = 0.
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There are M = 216 sets of BPM’s in the Tevatron.

Radius b = 3.5 cm, ` = 18 cm, and φ0 = 110◦, Zs = 50 Ω.

Total imp. at f � 180 Hz,
Z
‖
0

∣∣∣
BPM

n
= −i0.36 Ω, Z

H/V

1

∣∣∣
BPM

= −i0.43 MΩ/m.

One terminal monitors p beam and the other monitor p̄ beam.

In MI, there is only one beam, so there is only the upstream terminal
but not the downstream one.

Fraction covered by each strip-line is
f =0.055 using POISSON.

With M =208 sets of BPMs,

Z
‖
0

∣∣∣
BPM

=2Mf 2

(
1− cos

2ω`

βc
−i sin

2ω`

βc

)
Note: f takes the place of

φ0

2π
.

Low freq. (� 190 MHz), Z
‖
0

∣∣∣
BPM

= −i
4Mf 2Zs`

R
= 0.030 Ω (` = 12.5 cm)
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f =0.055 using POISSON.

With M =208 sets of BPMs,

Z
‖
0

∣∣∣
BPM

=2Mf 2

(
1− cos

2ω`

βc
−i sin

2ω`

βc

)
Note: f takes the place of

φ0

2π
.

Low freq. (� 190 MHz), Z
‖
0

∣∣∣
BPM

= −i
4Mf 2Zs`

R
= 0.030 Ω (` = 12.5 cm)
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Z H,V
1

∣∣∣
BPM

for MI

To derive Z H
1 , first determine image current Ix flows in a stripline for a

dipole current at beam pipe center.

i.e., determine the transfer function fx where Ix = fx I0∆.

Voltage drop in strip line: V1 = Zs Ix = Zs fx I0∆.

Power lost in 4 striplines: P =
4|V1|2

2Zs
= Zs (fx I0∆)2sin2 ω`

βc
.

This power loss is also P =
1

2
(|I0|∆)2Re Z

‖
1

∣∣∣
BPM

.

Panofsky-Wenzel −→ Re Z H

1

∣∣∣
BPM

=
2Zscf

2
x

ω
sin2 ω`

βc
.

Hilbert transform −→ Z H

1

∣∣∣
BPM

=
2Zscf

2
x

ω

(
1− cos2

2ω`

βc
− i sin2 2ω`

βc

)
.

fx and fy can be computed via POISSON or directly measured.

For all BPM’s at low freq., Z H
1

∣∣∣
BPM

=−i2.66 kΩ/m, Z V
1

∣∣∣
BPM

=−i5.15 kΩ/m.
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Impedances of Cavities

Cavity-like structures are high-Q discontinuites in the vacuum chamber.

The simplest characterization is by 3 variables:

resonant freq. kr =
ωr

c
, shunt impedance Rs and quality factor Q.

Near resonant freq. a cavity is best modeled by a RLC -circuit.

Z‖m =
R

(m)
s

1 + iQ (kr/k − k/kr )
, Z⊥m =

R
(m)
s /k

1 + iQ (kr/k − k/kr )
.

The above gives Z
‖
0 → k−1 as k →∞.

But the correct behavior given by optical diffraction model is

Z
‖
0 → k−1/2 for non-periodic cavities

Z
‖
0 → k−3/2 for an infinite array of cavities.

Shunt impedance is responsible to resistive loss and beam loading.

High shunt impedance and high Q are responsible for coupled-bunch
instabilities.
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Closed Pill-Box Cavities

If cavity is pill-box like with relatively small beam pipe,
it can be approximated by a closed pill-box of radius d and width g .

From Jackson, for example,

resonant freq.: k2
mnp =

x2
mn

d2
+

p2π2

g2
.

shunt impedance:

[
Rs

Q

]
0np

=
Z0

x2
0nJ

′2
0 (x0n)

8

πgk0np


sin2 gk0np

2β
× 1

1 + δ0p
p even

cos2
gk0np

2β
p odd

[
Rs

Q

]
1np

=
Z0

J ′1
2(x1n)

2

πgd2k2
1np


sin2 gk1np

2β
p 6= 0 and even

cos2
gk1np

2β
p odd

Resonant freq. ωmnp = kmnpc .

xmn is nth zero of Bessel function Jm(x).
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Numerical Computation and Measurement

Only impedances of cavities of simplest shape, like the pill-box, can be
computed analytically.

For the actual cavities, numerically computation is necessary, using
codes like SUPERFISH, URMEL, etc.

Calculation gives resonant freq. fr , R/Q and R for the lower modes.

Below is a URMEL computation of Tevatron rf cavity, showing a higher
TM mode.

constant rHφ

~E

Tevatron cavity has also been measured Sun and Colestock using
method of delectric bead-pull and wire measurement.
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Longitudinal Modes of Tevatron Cavity

URMEL Results Sun’s Measurements
Mode Type Frequency R/Q Q Frequency R/Q Q

(MHz) (Ω) (MHz) (Ω)

TM0-EE-1 53.49 87.65 9537 53.11 109.60 6523
TM0-ME-1 84.10 22.61 12819 56.51 18.81 3620
TM0-EE-2 166.56 18.47 16250 158.23 11.68 6060
TM0-ME-2 188.94 10.83 18235
TM0-EE-3 285.94 7.53 20524 310.68 7.97 15923
TM0-ME-3 308.46 4.07 22660
TM0-EE-4 402.69 4.93 25486 439.77 5.23 13728
TM0-ME-4 431.34 1.72 26407 424.25 1.28 6394
TM0-EE-5 511.69 5.57 25486 559.48 6.73 13928
TM0-ME-5 549.57 1.36 29453

748.18 10.90 13356
768.03 2.47 16191
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Transverse Modes of Tevatron Cavity

Agreement is not bad except for quality factors Q, which are much
higher in URMEL computation.

There are many de-Q structures not taken into account in URMEL.

The transverse of dipole modes have never been measured.
Below are the URMEL results:

Mode Type Frequency R/Q Q
(MHz) (Ω/m)

1-EE-1 486.488 229.80 31605
1-ME-2 486.864 148.95 31487
1-EE-2 513.370 117.38 33262
1-ME-3 518.317 117.93 34008
1-EE-3 561.727 81.62 33029
1-ME-4 575.298 3.84 35810
1-EE-4 625.123 61.00 32598
1-ME-5 650.853 35.21 37592
1-EE-5 699.723 54.76 33407
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Bellows

Bellows may be approximated by a series of
small pill-box cavities.

The imp. of one single cavity has been worked
out by Vos via field matching.

The imp. is much simplied when g � b,

2g

b

d

Z‖(ω) =
−igZ0

πbI 2
0 (kb/βγ)D

D =
R ′0(kb)

R0(kb)
+ 2k

[
S∑

s=1

1

β2
s b

(
1−e iβsg

sin βsg

βsg

)
−

∞∑
s=S+1

1

α2
sb

(
1−e−αsg

sinhαsg

αsg

)]
.

βsb =
√

k2b2 − j20s , αsb =
√

j20s − k2b2,

j0s is sth zero of the Bessel function J0

j0S is the zero that is just larger than or equal to kb.

R0(kb) = J0(kb)Y0(kd)− J0(kd)Y0(kb), with d = b+∆.
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As an example, consider a bellow convolution of the Tevatron with
∆ = 0.64 cm, 2g = 1.04 mm, b = 3.5 cm.

0 1 2 3 4 5 6 7 8 9 10
kb

0

10

20

30

40

R
e 

Z
0||   (

Ω
)

0 1 2 3 4 5 6 7 8 9 10
kb

−20

−10

0

10

20

30

−
Im

 Z
0||   (

Ω
)

Main peak at fr = 10 GHz above cutoff, broadband with Q ∼ 12.

Zsh/n ∼ 1.15× 10−4 Ω.

For N convolutions in bellows system, an estimate is to multiply by N.

In Tevatron, there are 1000 bellows each with 24 convolutions, giving
Zsh/n ∼ 2.8 Ω and low freq. Im Zsh/n ∼ −i0.28 Ω.
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Numerical Computation

Bellow convolutions are closed to each other and therefore talk to each
other. Resonance freq. will be lower.

Sometimes bellows are not so simple to have just convolutions on top of
beam pipe. Usually need to resort to numerical computation.

Codes TBCI or ABCI computes the wake behind a Gaussian bunch
passing thru a cylindrical symmetric structure.

Apply to the Tevatron bellows.
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Fourier transform is performed to the wake to obtain the impedance.

The resonance freq. is at ∼ 7 GHz for both Z
‖
0 and Z⊥1 lower than what

Vos’ prediction, and more broadband (Q ∼ 1).

We see more structure in imp. spectrum. Here even without
convolutions, the bellows structure acts as a cavity.

Result: Z
‖
sh/n ∼ 0.68 Ω and low freq. Im Z

‖
sh/n ∼ −i0.34 Ω.

Z⊥sh ∼ 1.1 MΩ/m and low freq. Im Z⊥sh ∼ −i0.40 MΩ/m.
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Comments on Bellows Numerical Computations

Exit pipe length is an issue, since all fields are assumed to drop

to zero on both sides.

Need to extend pipe length until results do not change by much.

It is best to have exit pipe length > pipe radius.

Time step has to be much less than width of convolution.

Incident beam is not a point charge, but is a short Gaussian bunch.

The wake is not the point-particle wake fcn.

Reduction to point-particle wake fcn. is possible, but with uncertainty.

Wake must terminate at a certain length in calculation.

Fourier transform will exhibit
sin x

x
-behavior.

This can be minimized by ending the wake at a point where wake is zero.

Or add a filter to Fourier transform.

A 2D code is always faster and easier to use than 3D code like MAFIA.
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Separators

There are 27 separators in Tevatron to separate p and p̄ bunches.

Simplified model:

� -2.75 m

� -2.57 m � -20 cm64 cm

618 cm 6?2.5 cm

68.5 cm

Each separator consists of 2 thick
plates, 2.57 m long.

A beam particle can excite resonances
at the upstream and downstream gaps.

Space between plate and enclosure
forms a transmission line.

Use MAFIA to compute wakes and FFT
to obtain imp.
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MAFIA Results
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At low freq., for each separator, Z
‖
0 /n ∼ −i0.019 Ω,

Z V
0 /n ∼ −i0.0075 MΩ/m.

For 27 separators, Z
‖
0 /n ∼ −i0.51 Ω, Z V

0 /n ∼ −i0.20 MΩ/m.

These are very small.

We would like to understand more about the impedances.

Instead of MAFIA, which is a 3D code, we use the 2D code URMEL in
the frequency domain.
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First 50 resonant modes are shown.

They are narrow because well below fcutoff = 4.59 GHz.

In 2D representation, upstream and downstream gaps can be viewed

as 2 cavities, connected by a coaxial waveguide.

Waveguide resonates when ` = 1
2nλ, with lowest mode

f =c/2`=54.5 MHz. Successive modes are also separated by 54.5 MHz.
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These modes will be excited most when cavities are excited,
with 1st pill-box (18-cm-deep) mode at ∼ 637 MHz.

We see coaxial transmission line mode peaks there.

2nd pill-box mode at 1463 MHz with radial node at 7.84 cm,
at the side edge of separator plate.

Since it is not perturbed by coaxial guide.

This mode is very strong.
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Similar analysis applies to the trans. dipole modes.

The lowest 50 dipole modes are shown.

First 2 pill-box dipole modes: 1016, 1860 MHz.

There is a special mode when one wavelength wraps around
“cylindrical plates” at r = 8.5 to 18 cm. Or freq. between 265 and
562 MHz.

This is seen in URMEL result (1st cluster).

This is not seen in MAFIA result, because there is no cylindrical
symmetry.
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Impedances of separator has been measured by Crisp and Fellenz, using
a current-carrying wire for Z

‖
0 and a current loop pad for Z⊥1 .

Attenuation S21 was measured and the imp. calculated according to

Z
‖
0 = 2Zs

(
1

S21
− 1

)
, Z V

1 =
2Zsc lnS21

ω∆2
,

∆=1 cm is current loop separation.

We do see similar imp. structures as predicted by MAFIA and URMEL,
except for a resonance near 22.5 MHz.

The resonance is due to the absorption of 1st waveguide mode by power
cables, connected to plates thru a 50 Ω resistor.
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Comments on Separators

The 2-m power cables increases the effective length of plates

and shifts 1st resonant mode down from 54.5 to 22.5 MHz.

This resonance contribute
Re Z

‖
0

n
= 0.82 Ω, Re Z⊥1 = 2.1 MΩ/m,

which are appreciable.

There are several ways to alleviate the effect:

I Smooth out the resonance by increasing the 50 Ω damping resistor

to 500 Ω.

I Increase length of power cables to further lower resonant freq.

I Maintain short Tevatron bunches to σ` = 37 cm,

so as to increase lowest head-tail mode to 82.8 MHz.
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Separators vs. Strip-line BPM’s
Separator resembles stripline BPM.

Why is separator imp. so much lower?

In BPM, image current created at strip-lines eventually flows into
terminations, which carry 50 Ω.

But image currents created on upper and lower sides

of separator plate at upstream gap,

annihilate each other at downstream gap.

Since no terminations to collect and dissipate image currents,

the loss is small.

Strip-line BPM does not exhibit resonances.

But there will be resonances at separator assembly,

which can contribute impedances.

So we must de-Q these resonances or shift them to frequencies

not harmful to the beam.
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